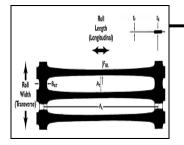

Composite of Glass Fiber or Polyester or PP or HDPE Geogrid Reinforced Solution

Geogrid Membrane System for Embankment of Soil Slope & Road Works Protection, Enhanced Stability, Reduced Erosion & Improved Bearing Capacity

LaMaCo Progrid BXGF System

Glass Fiber Grade of Uni-Direction Bi-Axial Geogrid Type Tensile Strength in kN/m [Wrap]: 25 - 120kN/m

LaMaCo Progrid BXPET System


Polyester Grade of Uni-Direction Bi-Axial Geogrid Type Tensile Strength in kN/m [Wrap]: 40 – 300kN/m

LaMaCo Progrid BXPP System

PP Grade of Bi-Axial Geogrid Type

Longitudinal Tensile Strength in kN/m: 15-45kN/m Transverses Tensile Strength in kN/m: 15-45kN/m

LaMaCo Progrid UXPP or Progrid UXHDPE System

PP or HDPE Grade of Uni-Axial Geogrid Type

Yield Strength at 2% Elongation kN/m: 7-85kN/m Yield Strength at 5% Elongation kN/m: 14-145kN/m

Tensile Strength in kN/m: 25-200kN/m

<u>LaMaCo-Progrid BXGF</u> or <u>Progrid BXPET</u> or <u>Progrid BXPP</u> or <u>Progrid UXPP</u> or <u>Progrid UXPP</u> or <u>Progrid UXPP</u>, system has extensive experience with internal soil reinforcement in a wide range "Step Slope", "Retaining Walls", "Highway Rail Embankments", "Landslide Repairs", "Landfills" & "Levees" of all type. Our Geogrid Membrane products have been proven in many installations throughout Worldwide with a broad variety of modular block facing.

What are Geogrid Membrane

Geogrids are <u>"Glass Fiber or Polyester or PP or HDPE"</u> widely used to stabilize slopes and roads base to provide **enhanced stability conditions**, **reduced erosion potential**, and **improved bearing capacity**. Their use provides reliable cost effective and practical solutions in often otherwise difficult geotechnical engineering conditions. Design using geogrids has become widespread and accepted throughout the geotechnical engineering discipline with the publishing of the British Standard (BS 8006: 1995) which is the "Code of practice for Strengthened/reinforced soils and other fills".

How Do Geogrid Membrane Work, Key Properties

The stability of fill slopes depends mainly on the shear strength which, invariably is difficult to predict with high degree of certainty. By incorporating geogrids within fill material the structures thus formed benefit from the mobilization of the high tensile force provided by the geogrid at low strains. This reinforcement results from the bond between the fill material and the geogrid through interlocking. Such reinforced fills will have reliable long-term stability when designed according to BS8006.

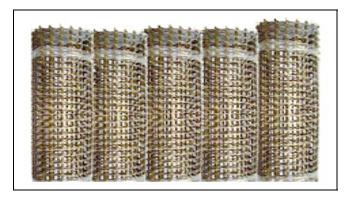
Where To Use Geogrid Membrane

→New or Existing Embankment Construction

Geogrids provide practical solutions in conditions where land take is limited or cost prohibitive (both financially and/or environmentally). Stable steep embankment slopes can be constructed reducing both earthwork quantities and minimizing the environmental impact of such works. In steep mountainous terrain geogrids provide a practical cost effective option for the construction of embankment slopes. By using steep reinforced geogrid slopes an aesthetically "green solution" is provided (vegetation covered) with no otherwise obvious concrete structure present.

→ Slope Remedial Works

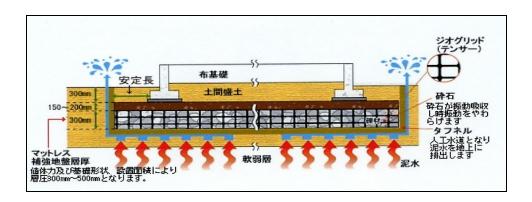
In steep mountainous terrain the failure of sidelong embankments is not uncommon due to the build up of excessive pore pressures between the fill material and original ground. By minimizing the need for sidelong filing geogrid embankments can provide an engineering solution that is significantly more reliably stable in both the long and short term to conventional methods of embankment reconstruction. The foundation of geogrid structures can be based on original ground and with the use of free draining material build up of pore pressures controlled. Geogrid solutions are also highly resistant to erosion due to the binding effect of the geogrid at the slope surface.

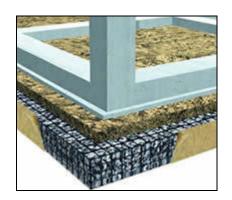

\Longrightarrow Road Widening & Noise Bunds

Geogrid reinforced embankments allow road widening with little or no land acquisition. This is particularly important in areas where development of the surrounding areas has taken place and land acquisition costs are high. By enabling the practical construction of steep embankments that are "green" (vegetated) geogrids also provide the ideal mechanism for providing aesthetic and environment friendly solutions for noise reduction bunds in areas that land is limited (alongside highways, airport etc.)

→ Basal Reinforcement

Geogrids can be used as reinforcement layers in the construction of embankments over poor ground, the base of road pavements, parking areas and railways. By accommodating the lateral stresses developed in the foundation, the use of geogrids minimizes differential settlement. Due to the reduction in differential movement the depth of founding layers can be optimized realizing cost savings in both materials required and time through improved traffic ability and longevity.

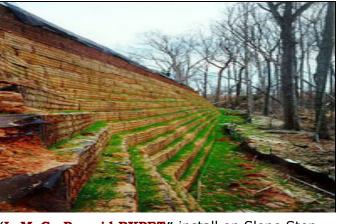

Advanced, Protected & Strengthen Soil Reinforced System by LaMaCo Progrid



Roll of "LaMaCo Progrid Net" Membrane

Roll of "LaMaCo Progrid" Membrane

Japan Housing Development Board Protected the "**LaMaCo Progrid**" system "**Geogrid Membrane**" as Ground or Basement Floor for Commercial Building/Factory, to Protected/Prevent on Soil Stability.


"LaMaCo Progrid UXPP" install on Retaining Wall

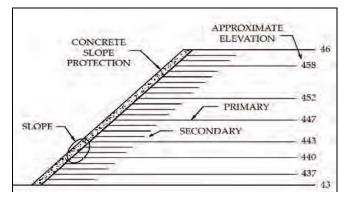
"LaMaCo Progrid BXPP" install on Sea Landfill

"LaMaCo Progrid BXGF" install on Slope Step

"LaMaCo Progrid BXPET" install on Slope Step

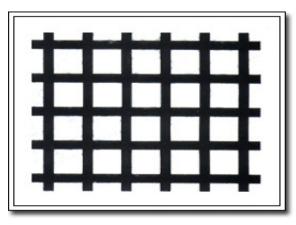
"LaMaCo Progrid UXPP" install on Side Retaining Wall

"LaMaCo Progrid UXPP" install on Railway Side Retaining Wall


"LaMaCo Progrid BXPET" install on Side Retaining Wall & Main Street Way

"LaMaCo Progrid UXPP" install on Side Retaining Wall & Main Street Way

"LaMaCo Progrid BXPET" install on Side Retaining Wall


Drawing for "LaMaCo Progrid" install on Railway Side Retaining Wall

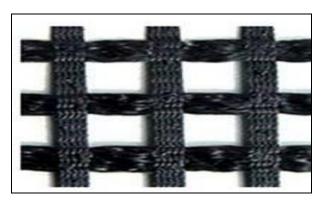
Specification of "LaMaCo Progrid BXGF®" Physical Properties

Glass Fiber Grade of Uni-Direction Bi-Axial Geogrid Type

Test Method	Progrid BXGF Grade of Products				
	30-30	50-50	80-80	100- 100	120-120
	Glass Fiber	Glass Fiber	Glass Fiber	Glass Fiber	Glass Fiber
	Yes	Yes	Yes	Yes	Yes
ASTM D4595	30 kN/m	50 kN/m	80 kN/m	100 kN/m	120 kN/m
ASTM D5262	30 kN/m	50 kN/m	80 kN/m	100 kN/m	120 kN/m
	<3	<3	<3	<3	<3
ASTM D5262	2-4%	2-4%	2-4%	2-4%	2-4%
	[-]100~ 280°C	[-]100~ 280°C	[-]100~ 280°C	[-]100~ 280°C	[-]100~ 280°C
	76	76	76	76	76
ASTM D5261	133	249	421	479	510
	12.7x 12.7	12.7x 12.7	25.4x 25.4	25.4x 25.4	25.4x 25.4
	4	4	4	4	4
	50 or 100	50 or 100	50 or 100	50 or 100	50 or 100
	ASTM D4595 ASTM D5262 ASTM D5262	30-30 Glass Fiber Yes ASTM D4595 30 kN/m ASTM D5262 30 kN/m <3 ASTM D5262 2-4% [-]100~ 280°C 76 ASTM D5261 133 12.7x 12.7 4 50 or	30-30 50-50	Glass Fiber Yes Yes Yes ASTM D4595 30 50 80 kN/m KN/m KN/m KN/m KN/m KN/m KN/m KN/m K	So-50 So-50 So-80 100-100

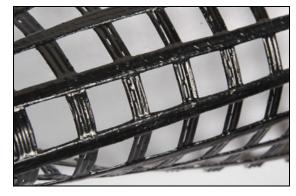
Glass Fiber Grade of Uni-Direction Bi-Axial Geogrid Type

"LaMaCo Progrid BXGF" Biaxial Geogrid Glass Fiber Biaxial


Tensile Strength kN/m: 25-120

Specification of "LaMaCo Progrid BXPET®" Physical Properties

Polyester [PET] Grade of Uni-Direction Bi-Axial Geogrid Type

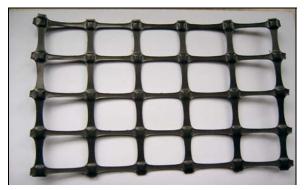

Properties	Test Method	Progrid BXPET Grade of Products				
Type of Model		50	80	100	120	300
Materials		PET	PET	PET	PET	PET
Bitumen PVC Coated Content %		Yes	Yes	Yes	Yes	Yes
Ultimate Tensile Strength in kN/mm [Wrap]	ASTM D4595	50 kN/m	80 kN/m	100 kN/m	120 kN/m	300 kN/m
Creep Reduced Strength in kN/m [Weft]	ASTM D5262	50 kN/m	80 kN/m	100 kN/m	120 kN/m	300 kN/m
Ultimate Tensile Strength in kN/m [Weft]	ASTM D4595	25 kN/m	25 kN/m	25 kN/m	25 kN/m	25 kN/m
Elogation in % [Wrap]	ASTM D4595	13%	13%	13%	13%	13%
Creep at 50%, Ultimate Load after 2 Years	ASTM D5262	2-4%	2-4%	2-4%	2-4%	2-4%
Temperature Resistance: °C		[-]100~ 280°C	[-]100~ 280°C	[-]100~ 280°C	[-]100~ 280°C	[-]100~ 280°C
Elastic Modulus [Special Grade of Polyester]		76	76	76	76	76
Weight in g/m ²	ASTM D5261	238	389	431	470	-
Mesh Size: mm x mm		12.7x 12.7	12.7x 12.7	25.4x 25.4	25.4x 25.4	40x40
Width Size: meter		4	4	4	4	4
Roll Length: meter		50 or 100	50 or 100	50 or 100	50 or 100	50 or 100

Polyester [PET] Grade of Uni-Direction Bi-Axial Geogrid Type

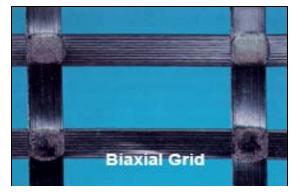
"LaMaCo Progrid BXPET" Biaxial Geogrid Polyester Biaxial

Tensile Strength kN/m: 40-300

"LaMaCo Progrid BXPET" Biaxial Geogrid Polyester Biaxial


Tensile Strength kN/m: 40-300

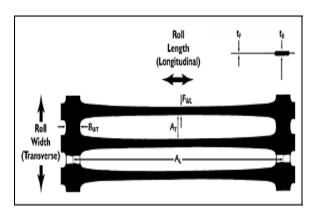
Specification of "LaMaCo Progrid BXPP®" Physical Properties


PP (Polypropylene) Biaxial Geogrid System

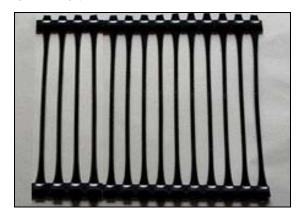
Properties	Test Method	Progrid BXPP Grade of Pro				ts
Type of Model		15	20	30	40	45
Material		PP	PP	PP	PP	PP
Mass-area Ratio: g/m2		300 ±30	330 ±30	400 ±30	500 ±30	550 ±30
Carbon Content [%] ≥		2	2	2	2	2
Tensile Strength in kN/mm		15	20	30	40	45
Longitudinal Yield Strength Elongation %		16	16	16	16	16
Transverse Yield Strength Elongation %		13	13	13	13	13
Longitudinal Yield Strength Elongation 2%		5	8	11	13	16
Transverse Yield Strength Elongation 2%		7	10	13	15	20
Longitudinal Yield Strength Elongation 5%		8	10	15	16	25
Transverse Yield Strength Elongation 5%		10	13	15	20	22
Weight in g/m ²	ASTM D5261	225	292	450	540	-
Mesh Size: mm x mm		35x35	39x39	39x39	40x40	-
Length Roll/m		50	50	50	50	30
Width Roll		4	4	4	4	4

PP (Polypropylene) Biaxial Geogrid System

"LaMaCo Progrid BXPP" Biaxial Geogrid PP Biaxial


"LaMaCo Progrid BXPP" Biaxial Geogrid PP Biaxial

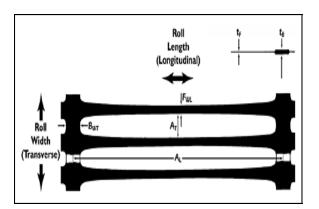
Specification of "LaMaCo Progrid UXPP®" Physical Properties


PP (Polypropylene) Grade of Uni-Axial Geogrid Type

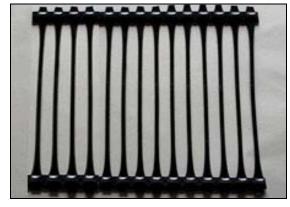
Properties Type of Model	Test Method	Progrid UXPP Grade of Products					
		50	80	110	170	200	
Material		PP	PP	PP	PP	PP	
Carbon Content [%] ≥		2	2	2	2	2	
Tensile Strength in kN/mm		50	80	110	170	200	
Elongation Ratio % ≤		10	10	10	10	10	
Yield Strength at 2%, Elongation kN/m ≥		12	20	32	64	85	
Yield Strength at 5%, Elongation kN/m ≥		28	48	64	120	145	
Length Roll/m		50	50	50	50	50	
Width Roll		2.5	2.5	2.5	2.5	2.5	

PP (Polypropylene) Grade of Uni-Axial Geogrid Type

"LaMaCo Progrid UXPP" Uniaxial Geogrid


"LaMaCo Progrid UXPP" Uniaxial Geogrid

Specification of "LaMaCo Progrid UXHDPE" Physical Properties


HDPE (High Density Polyethylene) Grade of Uni-Axial Geogrid Type

Properties	Test Method	Progrid UXHDPE Grade of Products					
Type of Model		50	80	110	120	200	
Material		HDPE	HDPE	HDPE	HDPE	HDPE	
Carbon Content [%] ≥		2	2	2	2	2	
Tensile Strength in kN/mm		50	80	110	120	200	
Elongation Ratio % ≤		10	10	10	10	10	
Yield Strength at 2%, Elongation kN/m ≥		12	20	32	64	85	
Yield Strength at 5%, Elongation kN/m ≥		28	48	64	120	145	
Length Roll/m		50	50	50	50	50	
Width Roll		2.5	2.5	2.5	2.5	2.5	

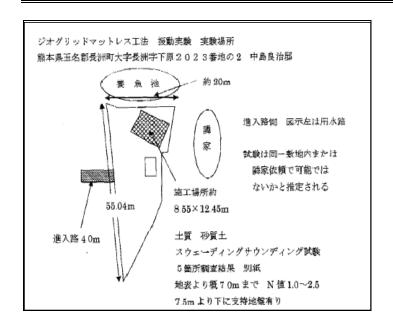
HDPE (High Density Polyethylene) Grade of Uni-Axial Geogrid Type

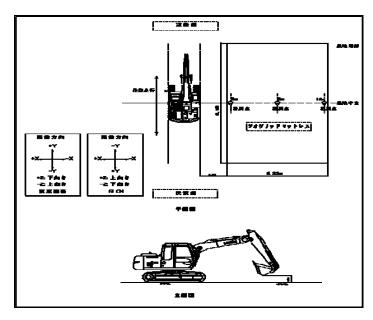
"LaMaCo Progrid UXHDPE" Uniaxial Geogrid

"LaMaCo Progrid UXHDPE" Uniaxial Geogrid

LaMaCo System Sdn Bhd

407, Jalan Perusahaan 6, Taman Bandar Baru Mergong,


05150 Alor Setar, Kedah. Malaysia.


Tel : +60-4-771 1111 Fax : +60-4-772 4444

Http: <u>www.lamaco.com</u> Email: <u>info@lamaco.com</u>

Important 1:

While the information and data sheet contained in this promotional literature are presented in good faith and believed to be reliable, they do not constitute a part of our terms and conditions of sales unless specifically incorporated in our Order acknowledgement. Nothing herein shall be deemed to constitute a warranty, express or implied, that said information or data sheet are correct or that the products described are merchantable or fit for a particular purpose, or that said information, data sheet or products can be used without infringing patent of third parties.

